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ABSTRACT

Coupled data assimilation (DA) provides a consistent framework for assimilating satellite observa-

tions that are sensitive to several components of the Earth system. In this paper, we focus on low-peaking

infrared satellite channels that are sensitive to the lower atmosphere and Earth surface temperature

(EST) over both ocean and land. Our atmospheric hybrid-4DVAR system [the Navy Global

Environmental Model (NAVGEM)] is extended to include the following: 1) variability in the sea

surface temperature (both diurnal variability and climatological perturbations to the ensemble mem-

bers), 2) the coupled Jacobians of the radiative transfer model for the infrared sensors, and 3) the

coupled covariances between the EST and the atmosphere. Our coupling approach is found to improve

forecast accuracy and to provide corrections to the EST that are in balance with the atmospheric

analysis. The largest impact of the coupling is found on near-surface atmospheric temperature and

humidity in the tropics, but the impact extends all the way to the stratosphere. The role of each coupling

element on the performance of the global atmospheric circulation model is investigated. Inclusion of

variability in the sea surface temperature has the strongest positive impact on the forecast quality.

Additional inclusion of the coupled Jacobian and ensemble-based coupled covariances led to further

improvements in scores and to modification of the corrections to the ocean boundary layer. Coupled

DA had significant impact on latent and sensible heat fluxes over land, locations of western boundary

currents, and along the ice edge.

1. Introduction

Development of coupled data assimilation (DA)

methods that better initialize coupled Earth system

models (ESMs) is essential to the improvement of

coupled model forecasts. Better initial conditions

improve short- to medium-range forecasts and better

expose model biases thus enabling more rapid model

improvement. One component of such a system is

the assimilation of satellite observations sensitive to

more than one component of the ESM, such as low-

peaking infrared and microwave channels that are

simultaneously sensitive to the lower atmospheric

temperature, moisture, and the surface. Traditionally,

such radiances were not assimilated, or were assimi-

lated with very large observation errors, because of the

uncertainty of the Earth surface temperature (EST)1

and emissivity in bothmicrowave and infrared frequencies.
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These uncertainties are particularly large over land and

ice, surfaces that can be highly inhomogeneous (English

2008) within the footprint of a satellite observation.

Misspecification of Earth surface temperature and

emissivity in the radiative transfer model can result in

aliasing poor knowledge of the Earth surface into

erroneous initial condition for the lower atmosphere.

Assimilating low-peaking channels can be further di-

vided, based on the level of uncertainty in surface tem-

perature and emissivity, into assimilation over the ocean,

ice, and land surface. Over the ocean, the surface tem-

perature is reasonably well constrained (with errors in the

SST analysis used in this study on the order of 0.2–0.7K),

with even better knowledge of the surface emissivity

(Geer 2019; Prigent et al. 2017). Over land, both the

surface temperature and the surface emissivity are poorly

known in the microwave and the infrared (Pavelin and

Candy 2014; Karbou et al. 2005; English 2008). Over ice,

developing reliable ice surface temperature retrievals has

been challenging due to uncertainty of the infrared cloud

clearing algorithm (Liu et al. 2010) and uncertainties in

microwave ice emissivity due to the presence of subgrid-

scale ice leads (Mathew et al. 2008).

In this article, we focus on extending assimilation

capabilities for low-peaking infrared channels over the

ocean surface, where most of the uncertainty can be

attributed to uncertainty in the ocean skin tempera-

ture (the first few microns of the ocean surface).

Following Akella et al. (2017), we used the model of

McLay et al. (2012) that incorporates the impact of the

diurnal warming. Our model is a modification of the

one-dimensional heat transfer model for the ocean

warm layer and skin sea surface temperature (SST)

(Zeng and Beljaars 2005; Takaya et al. 2010). In ad-

dition to the diurnal heating, we account for uncer-

tainties in mesoscale oceanic features by introducing

climatological SST perturbations in the short-term

ensemble forecast used by the hybrid DA. In the at-

mospheric DA system, we extend the control vector by

adding the two-dimensional field of EST to the standard

fields of atmospheric temperature, velocity, humidity,

and surface pressure. We also utilize the Jacobian infor-

mation from the radiative transfer model that partitions

the satellite brightness temperatures into atmospheric

and surface components.

However, unlike Akella et al. (2017) and Derber and

Li (2018), we also specify coupled ensemble covariances

between the atmospheric variables and the EST. These

covariances enable us to compute the EST increments

not only over the ocean (where we assimilate low-peaking

satellite channels) but also over land and ice, where,

through ensemble cross correlations, we estimate the EST

that is in balancewith the atmospheric correction generated

by the assimilation of routine atmosphere-only observa-

tions. It should be noted, however, that while these cor-

rections to the EST are in balance with the atmospheric

observations, they might not verify well with indepen-

dent measurements of the EST because of strong biases

in the land and ice temperature models and because of

large uncertainties in the surface emissivity.

The aforementioned coupled DA approach follows

the spirit of the interface solver method developed in

Frolov et al. (2016) that proposes to incrementally ex-

tend existing DA solvers by adding progressively more

information from the interfaces between coupled fluids.

This is in contrast to the ambition of an exhaustive solver

implementation of the strongly coupled DA, where the

cross covariance are prescribed and are used to estimate

the entire state of the ESM—from the top of the at-

mosphere to the bottom of the ocean (Sluka et al. 2016;

Penny et al. 2017).

2. Methods

a. Baseline system

This study used Navy Global Environmental Model

(NAVGEM;Hogan et al. 2014)—a semi-Lagrangian/semi-

implicit integration of the hydrostatic dynamical

equations of the atmosphere, the first law of ther-

modynamics, and conservation of moisture and ozone.

The resolution of theNAVGEMmodel used in this study

was T425 triangular truncation (about 31km horizontal

resolution at the equator) and a 60 level hybrid sigma-

pressure coordinate (top at 0.04hPa, or about 65km).

The NAVGEMDA solver, based on the accelerated

representer (AR) method (Xu et al. 2005; Rosmond

and Xu 2006), was a strong-constraint hybrid-4DVAR

system (Kuhl et al. 2013). The flow-dependent aspect of

the hybrid covariance is computed from an 80-member

low-resolution (T119L60) ensemble generated using

the ensemble transform (ET) method (McLay et al.

2008). (See Fig. 1 for the detailed description of how

the 4DVAR and the ET systems interact.) On average,

approximately three million observations were assim-

ilated during each 6-h assimilation cycle. (The com-

plete list of satellite observation used in this paper is

listed in Table A1.) In the next section we expand on how

EST perturbations are introduced to obtain an ensemble of

coupled forecasts that are used to generate flow-dependent

error covariance in the hybrid-4DVAR DA system.

The ocean SST and the ice concentrations in the

baseline system were provided by the Navy Coupled

Ocean Data Assimilation system (NCODA; Cummings

and Smedstad 2014). It should be noted that unlike in

(Cummings and Smedstad 2014), no active ocean model

was used to generate a prior ocean state; instead,
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persistence was used to propagate SST 12 h into the

future. The NCODA SST analysis is similar to other

SST analyses (Reynolds et al. 2007), but with a more

extensive set of satellite observations: see (Cummings

and Smedstad 2014) for the complete list. We also

want to further clarify that this work is distinct from

the work of Cummings and Peak (2014) that also at-

tempted to account for assimilation of sea surface

temperature radiances.

b. Modifications to the baseline system

1) OVERVIEW

An overview of the enhanced system is presented

in Fig. 1. Modifications to the baseline system are

shown in blocks with orange border, and they include

the following: addition of the diurnal SST model to

NAVGEM, inclusion of the climatological SST per-

turbations in the ensemble, and modifications to the

hybrid-4DVAR solver. The details of these modifi-

cations are described below.

2) SST PERTURBATIONS IN THE ENSEMBLE

SYSTEM

To emulate the distribution of the mesoscale ocean

features that one might expect from an ensemble of

fully coupled models, we perturbed the SST in the low-

resolution (T119) ensemble [see Fig. 1 and Kuhl et al.

(2013) for a description of how the high-resolution

control and the low-resolution ensemble interact].

These SST perturbations were generated by sampling

random perturbations from a 20-yr-long archive of

SST anomalies computed from the ERA-Interim re-

analysis (Dee et al. 2011). The anomalies were com-

puted by differencing the 20-yr archive from a seasonal

SST mean. The random anomalies where then selected

within 7 days from the month–day of the experimen-

tal date (e.g., for each date there were 14 days 3
20 years 5 280 possible samples to draw from). The

random perturbations were then scaled to enforce the

average standard deviation of 0.4K. We chose this

magnitude as an optimistic value for the average

RMS error of the NCODA SST analysis. After the

experiments were conducted, the actual SST analysis

errors were evaluated to be closer to 0.7 K (not

shown). We do not expect that this slightly lower

magnitude of the enforced SST spread would lead to

significantly different conclusions from this paper.

We decided to implement this simple scaling algo-

rithm instead of the original coupled ET approach of

McLay et al. (2012) because coupled ET has significantly

more atmospheric grid points than SST and, hence, the

rotation and scaling of the SST fields in the original ap-

proach was dominated by the number of the atmospheric

grid points. As a result, the original coupled ET struggled

to preserve the desired SST ensemble variance.

To simulate slowly evolving ocean perturbations, we

enforced temporal autocorrelations between climato-

logical perturbations using the following AR(1) model:

sst
red

(k)5 0:75 3 sst
red

(k2 1)1Dsst
white

(k) , (1)

where sstred(k) is the snapshot of the SST perturbations

smoothed in-time with the AR(1) model for each 6-h

DA cycle (k), 0.75 is the AR(1) coefficient that was se-

lected to represent typical weather decorrelation time

scales (;5 days), and Dsstwhite(k) is the random draw

from the SST anomaly archive [i.e., Dsstwhite(k) are

correlated in space but not in time]. Perturbations were

applied only in the open ocean areas with ice concen-

trations less than 50%. It is important to note that the

random perturbations sstred(k) were generated before

we scaled the magnitude of the SST perturbations to en-

force the average global magnitude of the SST error (see

Fig. 1). Hence, we didn’t need to worry that the red noise

process will generate perturbations with standard devia-

tions different than the magnitude of the sstwhite(k).

3) DIURNAL SURFACE MODEL

To add diurnal variation to our SST analysis, we used

the diurnal SSTmodel of (McLay et al. 2012). The diurnal

SST model was applied to both the high-resolution

forecast and to each individual ensemble member

used in the computation of the hybrid error covariance.

FIG. 1. Block diagram of the developed system. Modifications to

the baseline system are shown in blocks with orange border. New

elements are shown in orange blocks. Blocks with no change are

shown in blue. Legend gives preview of modifications, with full

details presented in the text of the paper.
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Our diurnal SST model (McLay et al. 2012) was based

on Takaya et al. (2010), which represents the following

surface layer processes: shortwave and longwave radia-

tive flux, evaporation, molecular thermal conduction,

and wind-driven turbulent diffusion determined through

Monin–Obhukov similarity theory. Unlike the original

model of Takaya et al. (2010), our implementation did not

represent impact of Langmuir circulation directly. Instead

the friction velocity was multiplied by a factor of 1.4 to

obtain a slight enhancement of surface stress. Unlike in

(McLay et al. 2012), the cool skin correction was active

in our experiments following the original publication of

Zeng and Beljaars (2005). The diurnal SST model was

active between 608N and 608S, where we expect the

magnitude of the diurnal signal to be the greatest be-

cause of the favorable sun inclination angle.

It is important to note that in the original paper,

McLay et al. (2012) tested the impact of the diurnal

SST model in the context of the extended-range en-

semble prediction system, where an ensemble of 10-day

forecasts was initialized using the ET technique cen-

tered on an external control analysis. In McLay et al.

(2012), the diurnal SST model did not impact the cen-

tering analysis. In contrast, this paper exercises the

diurnal SST model in a deterministic, cycling forecast

system, so that diurnal SST will impact the first guess

of the high-resolution (T425) forecast, and will im-

prove the near-surface spread of the low-resolution

(T119) ensemble system.

4) CHANGES TO THE HYBRID-4DVAR SYSTEM

Three changes were introduced to the atmosphere-

only hybrid-4DVAR equation:

xa 5 xf 1P
0
MTHT(HMP

0
MTHT 1R)21[y2H(xf )], (2)

where xf and xa are the model forecast and analysis

states, y are the observations, H(xf) is the first guess

(observation of the nonlinear forecast performed using a

nonlinear observation operator), R is the (potentially

correlated) observation error covariance,P0 is the initial

time hybrid covariance,M andMT are the tangent linear

and the adjoint of the forecast model, and H and HT

are the tangent linear and the adjoint of the nonlinear

observational operator. Following common termi-

nology, we also refer to the linear operator H as the

Jacobian operator.

The first change to Eq. (2) was to extend the analysis

vector xa to include xEST—the Earth surface tempera-

ture state:

xcoupled 5

�
xatm

xEST

�
. (3)

We should clarify that the analysis vector in our reference

system (the CONTROL experiment) did not contain xEST

as a sink variable. However, the nonlinear operator H(xf)

always depended on the EST values in all of our experi-

ments, where the background values of the EST were

provided to the nonlinear radiative transfer model as a

parameter. When diurnal model was disabled, the EST

over ocean was equivalent to the external SST analysis

from NCODA as described in section 2a. When diurnal

model was enabled, the EST over ocean was equivalent to

the NCODA analysis with the addition of the simulated

diurnal signal.

The second change to Eq. (2) was to include coupling

through the observation operator between infrared ra-

diances and the ocean surface:

yradiance 5Hcrtm2jacobianxcoupled 5 [JatmJsst]

�
xatm

xsst

�
, (4)

where Jatm and Jsst are the Jacobians of the radiative

transfer model provided by the Community Radiative

Transfer Model v 2.2.3 (CRTM; JCSDA 2018). In the

baseline system (CONTROL experiment in Table 1),

xsst was not included in the state vector, which was

mathematically equivalent to setting Jsst to zero. The

observation operator in Eq. (4) was only coupled for

low-peaking infrared satellite channels which were

assimilated over the surface of the ocean (xsst).

The last change was to include coupled initial time

covariance:

Pcoupled 5

"
PAA PAE

PEA PEE

#
’astatic

"
PAA
static 0

0 s2
ESTI

#

1aens

"
PAA
ens PAE

ens

PEA
ens PEE

ens

#
, (5)

where superscripts AA, EE, and AE denote cross

covariances between atmosphere–atmosphere, Earth

surface–Earth surface, and atmosphere–Earth surface

states, respectively. The subscript static corresponds

to the static (climatological) covariance and ens to the

localized ensemble covariance. We used the hybrid

coefficient of astatic 5 aens 5 0.5. We did not specify

cross covariances for the static and we used a trivial

identity matrix (I) to specify covariance of errors in

the Earth surface. Our weak justification for the last

assumption was based on the very coarse resolution of

the atmospheric ensemble (approximately 100 km).

We assumed that at such long scales, horizontal errors

in the Earth surface temperature can be assumed largely

decorrelated (e.g., our stand-alone SST analysis system

assumes that decorrelation scales exceed 100km only in
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the vicinity of the equator). We also expect that at these

scales, the vertical processes will dominate, as evidenced

by robust vertical cross correlations (PAE
ens ) (Fig. 2). We

also assumed a conservative EST forecast error sEST of

0.4K, which was possibly too low over land and ice.

To localize the ensemble correlation between the EST

and the atmosphere, we used the same vertical and hori-

zontal correlation matrix as used in the atmospheric

hybrid-4DVAR to localize the information between the

lowest level of the atmosphere and the rest of the vertical

column. Following Fig. 1 from Kuhl et al. (2013), the en-

semble correlations between the EST and the atmospheric

variables were localized to zero at the level of 500hPa and

were localized to 0.5 at approximately 800hPa. Horizontal

localization scales where about 2000km.

Weapproximated the coupled tangent linearmodel using

Mcoupled 5

�
MAA MAE

MEA MEE

�
’

�
MAA 0

0 I

�
. (6)

That is, we assumed persistence as the tangent linear

model for the evolution of the diurnal SST and the land

surface model. [We may be able to remove this ap-

proximation in future work by specifying the tangent

linear model for the surface processes and cross terms

using the ensemble tangent linear models of Bishop

et al. (2017) and Frolov and Bishop (2016).]

c. Experimental strategy

To evaluate the impact of the changes introduced in

this paper, we performed a series of 2-month-long

(1 June–1 August 2016) cycling DA experiments

(CONTROL, DSST_HR_ONLY, DSST, CJAC, CPB0,

and COUPLED_DA) summarized in Table 1. The

series of experiments was designed to add progres-

sively increasing level of coupling in the designed

system. We started by introducing the diurnal SST

model in the high-resolution forecast (DSST_HR_ONLY)

and the ensemble (DSST), followed by adding cou-

pling in the 4DVAR solver (CJAC and CPB0), and

culminated with the run that combine all previous

changes (COUPLED_DA).

In addition to the cycling run with the DA cadence of

6 hours, 5-day forecasts were performed daily at 0000 and

1200 UTC. We had 247 (total) 6-h deterministic forecasts

that were used to compute background fit-to-observations

statistics and 123 (total) 5-day deterministic forecasts that

were compared against ECMWF analysis.

d. Performance metrics

1) SKILL EVALUATION AGAINST ECMWF
ANALYSIS

To evaluate the skill of the modified system, we

compared the 0–5-day forecast skill against European

Centre for Medium-Range Forecasts (ECMWF) real-

time analysis from the TIGGE archive.

Our primary metric was improvement in the

root-mean-square error (RMSE) between the

FIG. 2. Statistics of the Earth surface and the lower at-

mosphere temperatures in run DSST. (a) Average standard

deviation of EST, (b) average standard deviation of 2-m at-

mospheric temperature, and (c) average correlations between

EST and 2-m temperature. Standard deviations and correla-

tions were first computed from 80 members of the T119 en-

semble for each analysis window and then averaged over all

analysis windows from 1 Jun to 1 Aug 2016.

TABLE 1. Configuration of the experiments.

Experiment

name

Diurnal

SST in

high-res

Diurnal

SST in

ensemble

Coupled

Jacobian

Coupled

covariance

CONTROL — — —

DSST_HR_ONLY Y — — —

DSST Y Y — —

CJAC Y Y Y —

CPB0 Y Y — Y

COUPLED_DA Y Y Y Y
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CONTROL forecast and each of the experimental

forecasts. We computed this metric d(r, z, t) as

follows for a set of regions (r), forecast length (t), and

height (z):

d(r, z, t)5
100

N
t

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
r

�
fi,jg2r

f[x
cntrl

(i, j, z, t, t)2 x
verif

(i, j, z, t, t)]2g
s

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
r

�
fi,jg2r

f[x
exp

(i, j, z, t, t)2 x
verif

(i, j, z, t, t)]2g
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
r

�
fi,jg2r

f[x
cntrl

(i, j, t, z)2 x
verif

(i, j, t, z)]2g
s

2
666664

3
777775,

(7)

where x (i, j, z, t, t) is the field of interest (temperature,

vector winds, precipitable water, or geopotential height);

i, j, z, t, t are indices of the longitude, latitude, vertical

level, initial time of the forecast and the forecast lead

time respectively; r are the verifying regions [NH

(208–808N), tropics (208S–208N), SH (208–808S)]; Nr is

the number of points in the verifying region; and Nt is

the number of verifying forecasts. Note that d(r, z, t)

is positive whenever the forecast error measureffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/Nr)�fi,jg2rf[xexp(i, j, z, t, t)2 xverif(i, j, z, t, t)]

2g
q

asso-

ciated with the experimental setup is smaller than that

associatedwith the baseline control experiment.Negative

values of d(r, z, t) indicate that the experimental con-

figuration has actually degraded forecast skill. Also note

that d(r, z, t) is a ‘‘percentage-improvement’’ type mea-

sure so that, for example, if the experimental configura-

tion had zero error by exactly matching the verification

then d(r, z, t)5 100. The averagedmetric d(r, z, t) is used

in Fig. 3 with positive (negative) change colored in red

(blue). All colored boxes in Fig. 3 are statistically signif-

icant at the 95% level. White boxes are approximately

neutral and not significantly different.

2) BACKGROUND FIT TO SATELLITE

OBSERVATIONS

In addition to traditional long-forecast error statistics

described in section 2d(1), we also implemented back-

ground fit-to-observations statistics for the 6-h short

forecasts used in the DA cycle (similar to observation-

minus-background statistics in Akella et al. 2017, see

their Fig. 12). It has been shown that improvements in

the background fit-to-observation statistics track im-

provements in the long-forecast skill well (A. Geer 2017,

personal communication). In addition, it only requires

about two weeks of cycling to establish if a proposed

system change has a positive, negative, or neutral impact

using the background fit-to-observation statistics. In

contrast, it takes two to four month of long forecasts to

establish similar improvement or degradation with the

traditional long forecast metrics. Finally, unlike the

external analysis, background fit-to-observation statis-

tics compares the forecast against observations and,

hence, is not sensitive to biases present in the external

analysis.

In this paper, we evaluated the background fit-to-

observations statistics only for radiance channels used in

the assimilation (see Table A1 for the complete list of

channels and categories used for verification). Because

of the uncertainty in the radiance bias correction, we

only computed statistics for the standard deviation of

the innovations (i.e., our statistics is insensitive to

changes in the bias of the innovations). Details of our

background fit-to-observation calculations are pre-

sented in appendix B.

3. Results

a. Correlations between atmospheric temperatures
and the EST

Figure 2 examines patterns of variability and corre-

lation between the EST and the 2-m atmospheric tem-

perature. Figure 2a shows that the largest spread of the

EST was over land (about 1K on average); in particular,

the largest spread was over deserts (about 1.5K)

and the lowest spread in the Amazon basin (0.3 K).

This spread over the land was driven by the fact

that each low-resolution ensemble member was cou-

pled to its own land surface model; hence, ensemble

perturbations in the atmospheric temperatures and

precipitation were resulting in correlated land sur-

face temperature perturbations. Over the oceans, the

highest spread was in the summer midlatitudes (about

0.5–0.7K), in the eastern tropical Pacific (about 0.5K),

and along the boundary currents (about 0.6–1.0K),

such as the Antarctic Circumpolar Current (ACC) and

the Gulf Stream. The spread patterns of the 2-m tem-

perature followed the EST spread closely, with an ex-

ception of winter midlatitudes (SH for our study period

where the spread in the 2-m temperature was approx-

imately equal to the spread in the summer hemisphere)

and the Antarctic ice edge (about 2K). Correlation
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between 2-m temperature and EST follows previously

documented patterns in the CERA system (Laloyaux

et al. 2018), where the higher correlations are asso-

ciated with the regions of shallower mixed-layer

depth, such as tropical east Pacific and summer

midlatitudes.

It is remarkable that the system described in this work

can generate correlation and SST variance patterns

similar to the fully coupled forecast model used in the

CERA system (Laloyaux et al. 2018) but, in our case,

without a dynamically resolved ocean mixed layer

depth. We attribute this to our use of time-correlated

climatological SST perturbations, which introduce

mesoscale variability in the ensemble of SST anal-

ysis. Additionally, while our diurnal model did not

have a resolved ocean mixed layer depth, it did re-

spond to atmospheric processes that correlated with

shallowing of the mixed layer, such as lower winds

and higher solar insulation.

We should note, however, that while the patterns of

correlations in Fig. 2 resemble correlation patterns

in a coarse (1) CERA system, they diverge from the

early results that we obtained in the high-resolution

coupled ensemble (1/38 atmosphere and 1/128 ocean).

FIG. 3. Improved (degraded) RMSE skill score [Eq. (7)] for CONTROL vs COUPLED_DA run in red (blue) compared against the

ECMWF analysis. Colored boxes indicate change at 95% significance level. White boxes are approximately neutral and not significantly

different. Tropics are defined from 208S to 208N and the Northern and Southern Hemispheres between 208 and 808 latitude. The avail-

ability of vertical levels for verification was determined by the availability of verifying data on the TIGGE archive.
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Our preliminary analysis shows that ocean and at-

mosphere have significant coupling (correlation) be-

tween near-surface atmospheric and ocean temperatures

in the regions of strong ocean fronts such as the Gulf

Stream and the ACC [see e.g., slide 39 in Frolov et al.

(2018a)]. In contrast, Fig. 2 shows depressed correlations

in these frontal regions. This last result suggests that an

eddy-resolving ocean model is required to properly cap-

ture atmosphere–ocean exchanges along the mesoscale

ocean fronts.

b. Impact of coupled DA on the forecast

1) LONG FORECAST ERROR DIAGNOSTICS

Comparisons of the control forecast (CONTROL) and

the forecast initializedusing coupledDA(COUPLED_DA)

against ECMWF analysis showed that COUPLED_DA

forecasts were significantly better than CONTROL

forecasts for a wide range of metrics and forecast lead

times (Fig. 3). The RMSE scores improved the most

(greater than 3%) for the tropical geopotential above

700 hPa and for the boundary layer and 200 hPa tem-

peratures in the tropics. Modest improvements (1%–

2%) were also detected for humidity in the tropics and

the SH. The impact of coupled DA was not localized to

the lower atmosphere and extends throughout the at-

mospheric column (see e.g., temperature scores up to

day 3 that were improved throughout the troposphere).

Closer investigation (not shown) showed that the pos-

itive impact was also apparent in the bias score metrics.

We hypothesize that improved tropical temperatures

near 200 hPa were due to improved representation of

tropical convection, which connects surface perturba-

tions with the tropopause. This hypothesis is supported

FIG. 4. Background fit-to-observations scores for experiments in Table 1. Scores are computed for assimilated channels only. Number of

channels corresponds to a unique combination of platform, sensor, and channel identification and will not necessary replicate number of

channels in Table A1. W, L, and T stand for ‘‘win,’’ ‘‘loss,’’ and ‘‘tie’’ as specified in appendix B. Highlighted in red is the best score in

this category.

FIG. 5. Average increments for the lowest atmospheric level for the CONTROL experiment: (left) temperature

increment and (right) specific humidity.
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byMcLay et al. (2012) where introduction of the diurnal

SST submodel enhanced deep convection along the

intertropical convergence zone.

Some degradation of the forecast scores was also ap-

parent (Fig. 3). Specifically, the tropical geopotential

and temperature scores (between 500 and 200 hPa)

were degraded beyond day 3 of forecast. This degra-

dation is likely due to known biases in NAVGEM

tendency terms. NAVGEM is overactive and tends

to have a strong negative geopotential tendency

(R. Langland 2019, personal communication). As a

result, NAVGEM has been historically tuned to

produce a biased analysis in favor of a more accurate

5-day forecast score. In other words, an improved

temperature analysis in this study (as shown byFig. 3) will

lead to degraded midtroposphere temperature scores

at day 5. Such mixed impacts on forecast scores are

common for almost any changes to the forecast system

FIG. 6. The 6-h temperature forecast bias averaged from 15 Jun to 1 Aug 2016. (a) First guess bias, (b) analysis

bias, (c) ratio of the experiment bias to control bias (forecast), and (d) ratio of the experiment bias to control bias

(analysis). Lower (higher) than 1 magnitudes in (c) and (d) indicate improvements (degradation) in the bias of one

of the experiments compared to the control.
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and, in this case, they are clearly outweighed by the

overwhelming positive impacts for other variables and

lead times.

2) SHORT-FORECAST ERRORS AND ATTRIBUTION

OF FORECAST IMPACT

Figure 4 summarizes background fit-to-observation

statistics for a sequence of runs with progressively in-

creasing level of coupling. The grand score across all

channels (line 1) indicates that introduction of diurnal

SST model in the high-resolution model was responsible

for themajority of the positive impact; however, using our

conservative metric, the introduction of the diurnal SST

along was still marked as a ‘‘tie.’’ Introduction of the di-

urnal SST had the biggest positive impact on water vapor

and surface channels in both infrared (IR) andmicrowave

(MW), which is consistent with the long-forecast score

statistics in Fig. 3. Diurnal SST also improved the fit to

tropospheric sensitive channels in the MW.

Progressive addition of coupling characteristics [in-

troduction of diurnal SST model in the ensemble

(DSST), introduction of coupled Jacobians (CJAC), and

introduction of coupled covariance (COUPLED_DA)]

resulted in progressive improvements to the grand score

(line 1, Fig. 4). Specifically, introduction of the diurnal

SST model in the ensemble (cf. DSST_HR_ONLY and

DSST) made statistically significant changes to tem-

perature soundings in the IR and MW (lines 2 and 3)

and, as a result, flipped the grand score in line 1 from a

tie to a ‘‘win.’’ The same change however, resulted in

the degradation of the IR surface scores (line 6).

Introduction of the coupled Jacobian and coupled

covariance further improved the grand score (cf. col-

umns DSST against COUPLED_DA). The biggest

improvements that can be attributed to coupled DA

were in surface IR (line 6), tropospheric temperatures

(lines 10 and 11), and in the water vapor channels (lines

12 and 13). Improvements in the surface IR channels

FIG. 7. Difference between the average analysis increments for the CONTROLexperiment and the (a),(b)DSST

experiment; (c),(d) CJAC experiment; and (e),(f) COUPLED_DA experiment. (left) Lowest level of temperature

and (right) lowest level of specific humidity.
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almost completely reversed degradation of scores due

to introduction of diurnal SST model in the ensemble

(cf. line 6 in columns DSST_HR_ONLY, DSST, and

COUPLED_DA).

3) COMPARISON OF ANALYSIS INCREMENTS

To further understand the impact of coupled obser-

vation operators and coupled initial time covariances on

the analysis, we compared average analysis fields from

the CONTROL, DSST, CJAC, and COUPLED_DA

experiments. On average, the analysis increment in the

CONTROL experiment Fig. 5 was cooling the air above

the ocean (indicating warm bias over the ocean) and

warming the air above the continents (indicating cold

bias over land). For specific humidity, the analysis was

adding moisture over most of the ocean (dry bias) and

removing moisture over land (wet bias). The pattern of

warm bias in the troposphere (and the corresponding

cool correction) is consistent with known NAVGEM

biases as illustrated by the average first guess and anal-

ysis errors measured against radiosondes (Fig. 6).

Introduction of the diurnal SST further increased

the strength of the average temperature correction

that cooled the warm bias over the oceans (Fig. 7a). This

correction extends through a large part of the tropo-

sphere (Fig. 8a). No coherent change in the humidity

increment emerged from introduction of the diurnal

SST model.

Introduction of the coupled DA altered the structure

of the average near-surface temperature correction over

the oceans (Figs. 7e and 8d) by introducing a warm cor-

rection in the boundary layer while slightly strengthening

the cold correction aloft. These near-surface changes can

be attributed to the impact of both coupled Jacobians and

coupled covariances (Figs. 8c,d).

In COUPLED_DA, the largest EST increments (in

both the average magnitude and the standard deviation,

Fig. 9) were over land (positive) and off the west coast of

Americas (negative). This pattern of EST increments is

consistent with the pattern of cold average corrections

to the atmospheric temperatures in Figs. 5–8. We at-

tribute these large signals to 1) systematic errors in our

FIG. 8. Zonal averages of the average difference between temperature analysis increments for CONTROL and (a) DSST_HR_ONLY

experiment, (b) DSST experiment, (c) CJAC experiment, and (d) COUPLED_DA experiment.
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land model (the land was too cold) and 2) known warm

bias in SST quality control procedure that erroneously

rejects cold water pixels in the upwelling filaments in

presence of low stratus clouds (C. Barron, December

2018, personal communication). The EST increments

were close to zero over ice because very few atmo-

spheric observations were available to constrain the

lower atmosphere and, through cross covariances, the

ice surface temperatures. EST increments were also

close to zero over the Amazon, possibly because of the

extensive tropical forest cover that isolated EST from

the fluctuations in the tropospheric temperatures.

The variance of the EST increments was largest over

land (Fig. 9b)–indicating a strong diurnal cycle in the

land surface temperatures (see discussion below). Over

the ocean, the variance of the corrections was largest in

the boundary current regions (Kuroshio, Gulf Stream,

and the Agulhas current retroflection region) and the

west coast of the Americas. Large SST increments can be

expected in the boundary current regions because of large

SST gradients, difficulties with the cloud clearing algo-

rithms, and advection of the ocean mesoscale features.

Finally, examination of the average EST increments

binned by the time of the day (Fig. 10) revealed strong

diurnal patterns of the average EST increment. We

found that the strongest corrections over land were in

the afternoon, suggesting that our land surface was too

cold during the sun-lit hours. In contrast, the bias over

the ocean upwelling regions was positive and strongest

during the night time, suggesting that the warm bias in

the SST quality control procedure was greater at night.

We also found that coastal upwelling regions were al-

ways too warm (cold increment on average), and the

equatorial Pacific region was too warm at night (cold

increment) and too cold during the daytime (warm

increment).

c. Impact on heat fluxes

Surface fluxes play important role in the fidelity of the

coupled model and, as we will see here, are very sensi-

tive to changes introduced by coupled DA. Because

turbulent fluxes are diagnostic quantities computed us-

ing the bulk formula, coupled DA changes these fluxes

through changes to the ESTs and to the lower atmospheric

temperature, humidity, and wind velocity. We choose

not to evaluate estimated fluxes against external fluxes

retrievals because of high uncertainty in the satellite-

retrieved fluxes. Instead, we rely on traditional observa-

tions described in section 3b to evaluate the fidelity of our

atmospheric model forecast. In this section our goal is to

evaluate how coupled DA changes the statistics of the

turbulent surface fluxes that provide flux of temperature

and moisture into the lower atmosphere.

Figures 11c and 12c show that on average, the mean

latent and sensible heat fluxes changed themost over the

ocean (greater by as much as 5%). Average changes in

the latent heat flux where greatest over the tropics in-

dicating decreased evaporation in the COUPLED_DA,

which is consistent with cooling of the SST in the

COUPLED_DA run. Figures 11d and 12d show that the

standard deviations of the latent and sensible heat fluxes

changed themost over land (as high as 1/3 of the average

value) indicating that estimated changes in the EST

were having a significant impact on the daily varia-

tions in the heat and moisture fluxes over the land

surface. Over the ocean, daily changes in the EST

increments led to largest changes in the latent heat

flux along the ITCZ and along the boundary currents.

Daily changes in the sensible heat flux were greatest

along the boundary currents and along the Antarctic

ice edge.

d. Comparisons with buoy data

To further understand the structure of the coupled

increments, we compared estimated SST increments

FIG. 9. Statistics of EST increments for the COUPLED_DA

experiment. (a)MeanEST increment and (b) standard deviation of

the EST increment.
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with two buoys in the California current system, where

the average magnitude of the coupled increments was

large. Figure 13 showed that theNCODASST boundary

condition had very little diurnal signal (the blue line in

Fig. 13 is very smooth compared to observations). This

smoothness could be expected from the definition of the

SST produced by the NCODA analysis. In contrast,

EST-corrected SST from experiment COUPLED_DA

(red line in Fig. 13) had a significant diurnal cycle that was

comparable to the magnitude of the diurnal cycle at the

FIG. 10. Diurnal evolution of the average COUPLED_DA EST increment. Panels show increments centered at

(a) 0000, (b) 0600, (c) 1200, and (d) 1800 UTC.

FIG. 11. Latent heat fluxes (average over 24 h and over the duration of the experiments). (a) Average flux for the

CONTROL experiment. (b) Standard deviation of the flux in the CONTROL experiment. (c) Average difference

in flux between CONTROL and COUPLED_DA. (d) Standard deviation of the differences in flux between

CONTROL and COUPLED_DA.
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location of the buoy sensor. Frequently, themagnitude of

the EST diurnal signal was even higher than the observed

at the location of the buoy sensor (e.g., between 26 June

and 9 July for buoy 46059). We attribute this to the de-

crease of the magnitude of the diurnal warming from the

surface to the submerged location of the sensor (ap-

proximately one meter depth).

For the COUPLED_DA experiment, mean error

statistics of the EST-corrected analysis showed signifi-

cant improvement at the location of the in-shore buoy

46047, reducing mean error from 0.89 to 0.58K. We at-

tribute this to the fact that buoy 46047 is located in the

area of the largest mean EST correction over the ocean.

For the CJAC experiment, there was no significant

change in mean error statistics.

4. Summary and conclusions

This paper demonstrated the first implementation of

coupled covariance modeling in a hybrid-4DVAR

system with an operational model. In addition to

coupled covariance modeling, observation operators

for low-peaking infrared channels also used the cou-

pled Jacobians of the radiative transfer model, similar

to (Akella et al. 2017; Derber and Li 2018). These

developments were made possible by applying prin-

ciples of the interface solver design outlined in Frolov

et al. (2016). We showed that introduction of the EST

in the atmospheric DA solver had positive impact on

atmospheric forecast scores, including reduction of the

geopotential height errors (up to 50 hPa) and humidity

errors in the boundary layer.

Examination of analysis increments revealed pat-

terns of model bias in our atmospheric model that

was coupled to the land model and to the diurnal

SST model:

1) Our land model had strong daytime biases (land

surface was too cold during the daytime (Fig. 10).

2) Both Equatorial and coastal upwelling regions had

strong SST biases (our SST analysis was too warm at

night in the upwelling areas). We attribute them to

the known warm bias in the quality control proce-

dures for SST analysis in presence of strong up-

welling filaments and low stratus clouds (upwelling

waters have been aggressively screened as clouds).

These bias issues have been since fixed in the

operational system.

3) Differences in the heat flux forecasts, showed

that coupled DA altered latent and sensible heat

fluxes over both land and ocean, hence, chang-

ing supply of heat and moisture into the lower

atmosphere.

4) Comparisons with buoy data suggested that EST

corrections from the COUPLED_DA run intro-

duced both the diurnal variation in the SST forcing

and reduced the mean error in the SST.

We conclude by highlighting some limitations of our

work that we plan to address in future research:

1) We used uncorrelated climatological background

error covariance for EST. Specifying correlated er-

rors for EST will improve smoothness of the EST

increments.

2) Our software implementation did not allow us

to tune localization functions between EST and

the atmospheric variables. It would be beneficial

to specify more complex cross-fluid localization

FIG. 12. As in Fig. 10, but for the sensible heat flux.
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functions, for example as used in Frolov et al.

(2016) or Laloyaux et al. (2018).

3) We did not include surface emissivity as a part of

the hybrid-4DVAR control vector. We plan to

include surface emissivity in our future work to im-

prove estimation of EST over land, ice, and snow-

covered areas following (Karbou et al. 2005; Pavelin

and Candy 2014; Mathew et al. 2008).

4) We plan to further extend the state vector to include

soil moisture variables.

5) We used trivial TLM and ADJ of the dynamical

model for the evolution of the EST and for dynam-

ical coupling between EST and the atmosphere. It

would be ideal to specify an actual TLM and ADJ

model based on simplified physics (Storto et al. 2018)

or based on the local ensemble tangent linear ap-

proach of (Allen et al. 2017; Bishop et al. 2017;

Frolov and Bishop 2016; Frolov et al. 2018b).

6) We used climatological perturbations to the SST.We

plan to use flow-dependent SST perturbations once

FIG. 13. (a),(b) Comparisons of the buoy SST observations (at 1m depth) in black with

analysis of the SST from NCODA analysis (blue) and NCODA analysis incremented by the

coupled EST increment (red). Locations of the buoy observations are shown in (c) for National

Data Buoy Center buoy 46059 [time series in (a)] and panel (d) for National Data Buoy Center

buoy 46047 [time series in (b)]. Background colors in (c) and (d) are average EST increments

from experiment COUPLED_DA (similar to Fig. 9a). Statistics of the mean error (ME) and

the root-mean-square error (RMSE) are noted on top of (a) and (b).
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this system is implemented as a part of our fully

coupled ensemble prediction system.
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APPENDIX A

List of Assimilated Satellite Radiances

Table A1 provides a summary of all assimilated sat-

ellite radiance channels used in the experiments de-

scribed in this paper.

APPENDIX B

Fit to Observation Statistics

For each unique combination of satellite radiance

channel, sensor, and platform (designated as ch#), over

a period of a single DA window (t:t 1 DtDA), the fit-to-

observation statistics f ch#t:t1DtDA
was computed as follows:

f ch#t:t1DtDA
5

std ych#t:t1DtDA
2Hch# xexpt:t1DtDA

� �h i
std ych#t:t1DtDA

2Hch# xcontrolt:t1DtDA

� �h i , (B1)

where ych#t:t1DtDA
are the observations for a given radiance

channel number and the assimilation window, and

Hch#(xexpt:t1DtDA
) are the matching forecasts of the radiance

observation. If f ch#t:t1DtDA
is less (greater) than 1.0, the exper-

iment fits the observation better (worse) than the control.

To aggregate the statistics over the length of the exper-

iment, we form a time series of f ch#t:t1DtDA
, and evaluate it

with a paired difference t test on the log-transformed raw

ratios of standard deviations. We accounted for serial cor-

relation in time following Wilks (1995), his Eq. (5.13). The

confidence intervals (we used 95% significance level) were

then back transformed from the log-space to the normal

space. If the confidence interval did not include 1.0, then

the channel was counted as a ‘‘win’’ (‘‘loss’’) if the mean

f ch#t:t1DtDA
was lower (higher) than 1.0. If the confidence in-

terval included 1.0, then the channel was counted as a ‘‘tie.’’

To compare across runs, we computed the grand fit-

to-observations score F as following:

F5
N

win
2N

loss

N
win

1N
loss

1N
tie

, (B2)

where Nwin, Nloss, and Ntie were the counts of wins,

losses, and ties, respectively, over predefined groups of

channels specified in Table A1. F in Eq. (B2) measure

the percentage by which the number of statistically sig-

nificant wins exceeds (or lags) the number of statistically

significant losses. Given a common reference, background

fit-to-observation score allows intercomparisons of multi-

ple runs. If the F score is larger for one run it means

that more radiance channels were significantly improved.

However, the F score, similar to many other score cards

used in numerical weather prediction, is insensitive to the

absolutemagnitude of the improvement. For example, two

runs with perfect score of 1.0 might produce significantly

different RMSE for the long forecast verification.

In addition to the grand fit-to-observations score F, we

also assigned wins, ties, and loses (WLT score) to sub-

groups of channels as follows:

8<
:

if ðN
win

.N
loss

1N
tie

Þ0WLT5win

elseif ðN
loss

.N
win

1N
tie

Þ0WLT5loss

else 0WLT5tie

.

(B3)

It should be noted that the WLT score in Eq. (B3)

above is a conservative estimate because it assumes that

all tie scores will go against the better if sufficient data

were available. A less conservative estimate would be to

assume that ties are akin to random coin flips, then one

can assume, within 1% margin, that 60% of ties are

converted to losses and 40% are converted to wins.
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